

Reinforcement Learning in Drop7

Adam Zaffram

College of Interactive Games and Media, Rochester Institute of Technology

Rochester, NY 14623 USA
acz1391@rit.edu

Abstract

This paper goes into detail about the application of Q-Learn-
ing to the game Drop7 created by Area/Code Entertainment.
This document outlines the intended implementation of the
algorithm and how the results will be evaluated. This algo-
rithm is compared to an artificial player that makes choices
at random to determine if it can achieve higher performance.

Introduction

Games like Chess and Go have already been beaten by ad-

vanced forms of artificial intelligence. Companies like

DeepMind are the driving force behind this movement and

have been putting well known games to the test. With a com-

bination of Q-Learning and Neural Networks, the baseline

for human performance can be exceeded without a previous

model. This has been proven in almost all of the early pop-

ular games such as Space Invaders and Pong (Mnih et al.

2015). Unfortunately, with the recent publishing of games

being beaten by similar algorithms, Area/Code Entertain-

ment’s game, Drop7, has not received much attention.

 I will be taking part in changing this notion by working

on my application of the Q-Learning reinforcement learning

method to Drop7 using C#. In applying this algorithm, I am

looking to determine if an agent driven by this algorithm can

achieve a human-level performance.

Background and Gameplay

Drop7 was released in 2009 by Area/Code Entertainment,

which was acquired by Zynga Inc. in 2011 and renamed

Zynga New York (Wikipedia 2022). Drop7 can be generi-

cally described as a puzzle game with a finite number of ac-

tions and items (Wikipedia 2022). The main interactable ob-

ject in the game is the disc. There are a total of eight types

of discs in the game. This includes discs numbered from one

to seven and a blank disc. Discs can only be dropped into

the Drop7 playing field, a 7x7 grid. During a game of Drop7,

the player is greeted with a disc at the start of every turn and

has the option of choosing one of the seven columns to drop

it. These actions are the same across all game modes, how-

ever the starting playing field and provided disc on each turn

might differ. According to Wikipedia, Drop7 has three game

modes, comprised of “Normal Mode”, “Blitz Mode”, and

“Sequence Mode” (2022). I will be implementing the Q-

Learning algorithm into the “Normal Mode”.

 “Normal Mode” starts the player off with a blank 7x7 grid

and follows the traditional ruleset. The player is provided

with a disc at the start of each turn, which can then be

dropped into any of the seven columns unless the column is

full. The disc provided in “Normal Mode” can be any of the

available options which consist of a blank disc, and discs

numbered from one to seven. To receive points, the player

must break a disc. To break a disc, the player must drop a

disc such that the number of continuously touching discs in

either the same column or row match the disc’s number.

This can invoke a chain reaction that exponentially increases

the multiplier. Blank discs take three hits to break while the

others take one. The blank disc turns into a randomly num-

bered disc when it has one life left. After a certain number

of turns, the board is shifted up by one row with the bottom

row being filled with blank discs. I chose to have the shift

occur after ten turns. Turns are repeated until no more col-

umns can be chosen or a disc is pushed above the top row

after a shift occurs.

Related Work

Reaching number two in IGN’s top twenty-five iPhone

Games list in 2009 (Wikipedia 2022), Drop7 was among the

most popular games at the time. Unfortunately, with poor

game maintenance and company controversy, it wasn’t long

until the game was unobtainable in all smartphone app

stores. This could be the possible cause as to why there is a

lack of available information relevant to Drop7 and little to

no artificial intelligence research conducted on it. Fortu-

nately, I was able to find one paper that directly involves

applying machine learning to the game Drop7. While I do

not know the validity of this paper, it has substantial data

regarding their experiments and uses a similar method of

implementation. According to Ben Friedmann and Erez

Klein (2018), they chose to just use Q-Learning due to their

time constraints with the addition of linear function approx-

imation. Due to Drop7’s massive possible state space, using

Q-Learning without a Neural Network limited their data col-

lection. Because of this, they used linear function approxi-

mation and limited themselves to 50,000 iterations for the

reinforcement learning to complete. Friedmann and Klein

were then able to play 10,000 games using this policy.

 For their evaluation, their baseline was based on an agent

that would choose an action to take at random, as well as a

set of human scores. This random agent would have data

collected on 5,000 games while human scores would be col-

lected on thirty. The two researchers concluded that their re-

inforcement learning agent outperformed the random agent,

however, it did not outperform the human players (Fried-

mann and Klein, 2018).

 As my methods of implementation and evaluation are

similar, the section where I start to stray apart from Fried-

mann and Klein is in their strategy of awarding the player.

While there are many possible methods of providing

awards, Friedmann and Kline chose to award the artificial

player one point “as long as the game did not end” (2018).

While I think this is a fair system to have in place, the player

will not have any motivation to make moves that would ac-

cumulate a better score and benefit the future of the game. I

will break down how this method differs from my system

and how it will ultimately provide a different set of data for

evaluations. The last thing I differed from their method is

that they have the discount rate set to one which will priori-

tize expected future rewards. I wanted more exploration in

my case.

 In a paper published by Arthur L Samuel (1959), Arthur

studied the way machine learning would play checkers in

hopes to conclude that the implemented artificial intelli-

gence can play better than the person who made the pro-

gram. While Samuel found success in a short amount of

time, he also made a decision that was counterintuitive at

first thought. He ignored all the values if the terminal states

reached. This differed from how Friedmann and Kline and I

updated weights. I will be taking those data sets and feeding

them back into the agent, so it knows the outcome of each

instance.

Method

As previously stated, I chose Q-Learning, a method of rein-

forcement learning, to achieve a human-level performance.

With any form of machine learning, a solid winning strategy

is necessary. For the agent to learn its environment without

an initial model, I used a Markov Decision Process.

 Per the Markov Decision Process, there must be a set of

states (S), a set of actions (A), the probability of S’ given an

action, A, in state S (Pa(s,s’)) and an award for every com-

pletion of an action (Ra(s,s’)). The state space, S, that I uti-

lize for the algorithm includes each cell in the 7x7 grid and

the next disc to be dropped. The action space consists of

each column in the grid which can be mapped onto numbers

one to seven. Neither probability nor reward can be calcu-

lated or initialized before the start of the game due to the

massive state space, so they are both calculated as the game

progresses.

 As for the reward policy, I utilized the current scoring me-

chanic built into the game with the consequences of losing

the game. If the agent destroys any discs, it will receive the

final score calculation of that chain. With every sequential

disc destroyed in a chain, the exponential multiplier goes up.

Any discs destroyed on the first chain seven to the first. Any

on the second chain is seven to the second. This repeats for

however many chains. Needless to say, the agent will prior-

itize destroying discs with the hopes of improved final

scores. The agent will also avoid any game-ending actions

as it will be rewarded negative ten points if that happens.

 To calculate the Q-value, or quality, associated with each

state, I utilized the Bellmen Optimality Equation:

𝑄(𝑠, 𝑎) = (1 − 𝛼)𝑄(𝑠, 𝑎) + 𝛼(𝑟 + 𝛾𝑚𝑎𝑥(𝑄(𝑠′, 𝑎′))

This equation provides me with the Q value for the current

state, S, and action, A. α is the learning rate. I have this set

at 0.4 because I want it to prioritize the current state while

also giving the expected future reward a decent amount of

weight. γ is the discount rate which determines how much

we should prioritize future rewards. Because rewards can be

drastic in size, I have this value set at 0.90 so it gets the ma-

jority of the future reward. This decision helps with compu-

tational efficiency since the algorithm is doing less explor-

ing and grabbing the more important data points.

Evaluation

To make this evaluation, I have two versions of players in

the game for comparison. The first player will be my base-

line comparison for the game while the other will include

the applied algorithm. Like Friedmann and Kline (2018), the

first player will play the game by dropping discs randomly

until they lose. The second player will have the Q-Learning

algorithm built into it. What makes this algorithm theoreti-

cally smarter than randomly picking a spot to place a disc is

its parameters. It will be able to see a snapshot of the game’s

status and be able to make decision from this information.

 To determine which agent outperformed the other, I will

be running both algorithms 1,000 times each and observing

the level and score of each game. From this, I will compare

the frequency distribution and averages of the level and

scores reached. The smart agent will be learning as the

games play out. I set the algorithm to make 20 iterations be-

fore every turn in one of the 1,000 games. The level and

score data from each game are stored into an excel document

which is used for my analysis.

Results

Table 1: The level reached for the random and smart agent over

one-thousand games.

Table 2: The distribution of reached level of the random and

smart agent over one-thousand games.

Table 3: The final scores of the random and smart agent over one-

thousand games.

Table 4: The distribution of final scores of the random agent over

one-thousand games.

Table 5: The distribution of final scores of the smart agent over

one-thousand games.

Interpretation

Comparing the resulting data of the random agent to the data

of the smart agent, it is clear that there is no significant dif-

ference between their performances. This conclusion did not

come as a surprise. The similarity between the agents is

likely due to a collection of limitations, many of which

Friedmann and Kline had also encountered. In Table 1 and

Table 3, there is no significant increase in scores or levels

for the smart agent as it progressed through the games. Ad-

ditionally, looking at the distribution of the final level

reached, and final score obtained for both agents, they are

almost identical. However, it should be noted that the smart

agent had 16 more games more than the random agent that

surpassed a score of 200,000. Furthermore, the smart agent

had eleven less games than the random agent that scored less

than 5,000 points. To my initial surprise, when looking into

the averages across all the games played, the smart agent

had an average final score approximately 1.8 times the av-

erage final score of the random agent. The smart agent had

an average of about 2,410,254 points while the random

agent had an average of 5,324,567 points. Looking into the

average final level data for both agents, they are almost iden-

tical. The random agent accumulated an average of 5.56 as

the smart agent accumulating an average of 5.59. This dif-

ference is insignificant.

Conclusions

Given that the reinforcement learning algorithm had a

higher score than the random algorithm, I think it can be ex-

plained through chance. The smart agent has a few outstand-

ing outliers that push the overall average higher. After log-

ging another 1,000 games for the smart agent, I obtained an

average of 2,230,919, which is much closer to the random

agent results.

 The root of the poor results is likely a result of the enor-

mous state space that Drop7 has. With such a big state space,

the possibility that the algorithm will encounter the same

grid state with the same next disc is incredibly small. In or-

der to maintain a state that can outperform the random agent,

the smart agent would need to simulate many more games

such that the probability of running into stored data is

higher. Unfortunately, doing this would only lead us to an-

other limitation, memory storage and computation time.

 With the conclusion that the two agents are almost indis-

tinguishable from each other, it is understood that this algo-

rithm will not be effective without the addition of a Neural

Network or some way to represent data much more effi-

ciently. Without these, many factors are added to the equa-

tion with just the use of reinforcement learning.

Future Work

In future work, I think a better form of evaluation on some-

thing like this would be to run many more tests on the game

to get more accurate results. It also might be effective to de-

fine a new reward policy. A more effective and readable

reward policy would require uniform reward distribution for

particular actions. This would provide data that has less out-

liers and is overall closer together. In addition to a better

reward policy, I would like to introduce the comparison

against human data. This would better help gage if the rein-

forcement learning is actually performing to a human level.

I could compare it to a hundred games played by me to de-

termine what human-level performance data looks like. It

might also be helpful to compare my algorithms perfor-

mance to the Friedmann and Kline’s algorithm for better

judgement.

 Based on the conclusion of the project and lessons

learned, there is undoubtedly room for improvement. I

would like to continue working on this project to find a more

optimal method of data collection, retrieval, and updating. I

am determined to advance my knowledge in this area of re-

inforcement learning and achieve observable enhancements.

References

Area/Code Entertainment, 2009. Drop7

Arthur L Samuel. 1959. Some studies in machine learning using
the game of checkers. IBM Journal of research and development 3,
3 (1959), 210–229.

deeplizard, 2018. Q-Learning Explained – A Reinforcement
Learning Technique, In YouTube.

deeplizard, 2018. Exploration vs. Exploitation – Learning the Op-
timal Reinforcement Learning Policy, In YouTube.

Friedmann, B. and Klein, E. 2018. Final Report – Drop7

Kolodko, A. 2017. Drop7 Browser Game

Wikipedia Contributors, 2022. Drop7, In Wikipedia

Wikipedia Contributors, 2022. Zynga, In Wikipedia

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A.
Rusu, Joel Veness, Marc G. Bellemare, Alex Graves, et al. 2015.
“Human-Level Control through Deep Reinforcement Learning.”
Nature 518 (7540): 529–33. https://doi.org/10.1038/nature14236.

https://doi.org/10.1038/nature14236

